If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-46=0
a = 2; b = 14; c = -46;
Δ = b2-4ac
Δ = 142-4·2·(-46)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{141}}{2*2}=\frac{-14-2\sqrt{141}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{141}}{2*2}=\frac{-14+2\sqrt{141}}{4} $
| b/18-3b/17=10/17 | | 5(r+9)-2(1-R=1) | | x^2+4=-60 | | 9a3–16a=0 | | -6+3/4x=-21 | | 3x+10=x2 | | x+4x+18=180 | | 4(3x-3)+76=5x+1 | | x+6√x+5=0 | | 8x-16-5x=-2x+16+5x | | x10=8 | | x+1+4x=-9-x | | 45x+10=90 | | 20x+10(2x-3)5(3x-4)(3x+7)=1059 | | -8y-10=-6y | | 3x–1–(x+3)=1 | | 180=10(4e+12) | | 4.9t^2+2t-6=0 | | 2b-0.6=3b | | -24=-10h+3 | | y/4=17/2 | | x^2-5x=-16 | | 5x-3(-2x)=1-2x | | -3y+21=-3+21 | | -9(2x-1)=40 | | 16x^2-80x-5=0 | | (x-1)(x+2)+(x-1)(x-5)=(x-1)(x-5) | | -1=w-1 | | 3x+x(5-2×)=0 | | 2b-0.6b=3b | | 16x-80x-5=0 | | 1/3(18x+3)=-3 |